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Abstract-A boundary element model to deal with heat and solute diffusion involving a moving interface 
is presented. The problem requires the solution of two parabolic partial differential equations in variable 
domains se:parated by a moving interface, whose temperature and velocity, as well as the concentration 
jump across it, are not know n priori but have to be determined as part of the solution. Moreover, the 
temperature of the interface is concentration-dependent while its velocity depends on both temperature 
and concentration gradients. To validate the scheme a test problem, which has an explicit similarity solution 
(analytical), is considered. Numerical results show that the boundary element method is very accurate, 
especially in regard to the concentration jump across the interface. 0 1998 Elsevier Science Ltd. All rights 

reserved. 

‘I. INTRODUCTION 

Many engineering processes are modelled as moving 
boundary problems, where a set of partial differential 
equations are to be solved for a domain whose bound- 
aries are moving as a consequence of the dynamics of 
the internal prooess. Such problems are widely, but 
no exclusively, encountered in the metal, glass, plastic 
and oil industries. However, moving boundary, or 
Stefan, problems have been, for many decades, syn- 
onymous with phase change and diffusion problems. 
Due to their ca’mplexity, analytical solutions are 
impossible to obtain, with the exception of relatively 
simple cases, and therefore, recourse is often made 
to numerical techniques, such as Finite Differences 
(FDM), Control Volume (CVM), Finite Elements 
(FEM) and Boundary Elements (BEM) Methods [l]. 

Unlike the classical Stefan problem alloy phase 
change involves coupled partial differential equations 
for both heat and solute transfer. This is a moving 
boundary problem in which the equations of heat and 
mass transfer are coupled through the conditions at 
the phase boundary. This situation is more com- 
plicated than the classical Stefan problem, or phase 
change in pure substances, in which the temperature 
at the moving boundary is known. Phase-change in 
alloy systems can be efficiently computed, in an aver- 
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age sense at the macroscopic scale, using ‘fixed domain 
methods’ [2]. However, when a more accurate evol- 
ution of the interface is required, the so-called ‘front 
tracking methods’ are more appropriate [2]. Fur- 
thermore, not all Stefan-type problems can be reform- 
ulated in a rigorously justified ‘weak form’, let alone 
the convergence of a fixed domain numerical solution 
associated with it [3]. 

In recent years, the boundary element method has 
emerged as a powerful technique for many problems 
particularly those with variable and extended 
domains, since only discretization of the boundary is 
necessary [4]. In this paper a boundary element based 
technique to deal with such superposed Stefan prob- 
lems is presented. In order to validate the scheme a 
problem which has an analytical solution is considered 
[5]. The numerical results are in good agreement with 
the analytical solution and that obtained with other 
numerical methods. This gave some confidence in the 
applicability of the method to more general situations 
where analytical solutions are impossible to obtain. 

2. BOUNDARY INTEGRAL FORMULATION 

Consider the following diffusion equation, defined 
over a time-dependent domain Q(t) : 

aa 4 
at = aV*u(x, t) for x E n(t) (1) 

with certain conditions, of Dirichlet, Neumann or 
mixed types, on the boundary F = 80. An integral 
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NOMENCLATURE 

: 
heat capacity per unit volume Greek symbols 
concentration thermal/chemical diffusivity 

d chemical diffusivity ; latent heat of phase change 
K thermal conductivity 5 source/collation point 
S position of the moving interface 0 a relaxation parameter. 
t time 
T temperature Subscripts/superscripts 
U field variable, which can be 0 initial condition (t = 0) 

concentration or temperature j = 1,2 homogenous region/domain index 
V velocity of the moving interface k iteration index 
X space coordinate. n time step index. 

equation corresponding to (1) over the entire space- 
time domain can be obtained from the general weigh- 
ted residual statement : 

[dib,,u*(czV2u-$)dQ=0 (2) 

where u* is the free-space Green’s function, or fun- 
damental solution, given by : 

u*(T, x, z,t) = l exp{-&} [47cGI(r - t)]D’2 

(3) 

which is the solution of: 

g +ctv*u* = --B(<-x)6(7-t) (4) 

where 6 denotes the Dirac delta function, D is the 
dimension of the problem, and r = 11 {--xl/ is the 
Euclidian distance between the field point x and the 
source point 6. Using Green’s second identity and 
making use of the Reynolds transport theorem, the 
integral representation of (1) is obtained in the form 
[6-131: 

*au au* 
u an-%l 

+ $u*+b 1 s dI-+ u*udQ (5) 
W,) 

where t is the rate of boundary motion in the outward 
normal direction I, and /I(<) is a constant which 
depends on the position of the source point c, the 
smoothness and shape of the boundary [ 141. 

3. APPLICATION TO SUPERPOSED STEFAN 
PROBLEMS 

Consider a problem in which two substances diffuse 
simultaneously into a domain R = Q, U Q,, where a, 

and ?A2 are two homogeneous adjacent domains sep- 
arated by a moving interface s(t). This self-similar, 
superposed, Stefan problem occurs in many fields of 
science and engineering, for instance in precipitant- 
protein systems, where the crystal protein is grown 
with a precipitating agent such as salt [15]. It can 
also be seen as a model for binary-phase change [3]. 
However, the numerical aspects in both cases remain 
the same, consisting of solving two diffusion partial 
differential equations in each region and insuring mass 
and energy balance across the interface. Without fur- 
ther probe into the merits and application of such 
formulation, and since this paper focus on the prob- 
lem from the numerical point of view, let us consider 
the same system of equations considered by previous 
authors [5, 16181. It consists of heat and con- 
centration diffusion through two different regions sep- 
arated by a moving interface ; the problem is governed 
by: 

for (x,t)~Cl,(t), j= 1,2 (6) 

where T,(x, t) and C,(x, t) refer to temperature and 
concentration at position x at time t, respectively ; 
cl,(t) = {(x, t) : 0 < x ,< s(t), t > 0) and zZ,( t) = 
{(x, t) : s(t) < x < a, t > 0) ; K, c and d refer to ther- 
mal conductivity, heat capacity/unit volume and 
chemical diffusivity, respectively. The initial and 
boundary conditions are : 

T,(x, to) = To, C,(x, to> = Co. s(to) = 0 (7) 

OTT, +fraz-,/ax = F:(t) 6 atx=O 
f c, +f; ac, /ax = F; (t) 

(8) 

= F;(t) atx=a 

e2c2+fc2 ac,jax = iqt) 
(9) 

where FT, Ff, Fc and Fc2 are known functions and 
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p:, fT, pi, f;, p;, f;, p;, f; are real constants. At the 
interface, x = s(t), we have 

T, (s(t), 0 = Tz(J’(f), t) = h, [C, (s(t), 01 

= &[G(S(& 01 (10) 

g!!__K 5 
dt 1 ax 

_K 3 
2 ax x=s(,) 

(11) 
x=s(r) 

[C&t)-C,(Q)]; = -d, 2 
x=5(,) 

+dsz 
x=s(I) 

(12) 

where h, and h, are two known functions (e.g., in the 
case of alloy phase change, these functions are derived 
from the phase diagram as the solidus and iiquidus 
curves) ; I is the latent heat of melting/solidification 
per unit volume. 

Defining a new variable u,(x, t), which could rep- 
resent either T,(x, t) or C,(x, t) and applying equation 
(5) to any region a,, bounded by the boundaries X: 
and Xf , the following can be written : 

-u’,h,(~,O,t,,ti)+lCI;(T,tn); 5 = O,s- (16) 

$4 = --a2 &72(5, n, n, I 
i=o 

s t t-) (.:++ &:+) 

-ubh2(5,a,t,,t,)+~"z(5,tn); 5 =s+,a (17) 

where At denotes the time step length, u”, = 
Ul(O, t!J, G- = UI (3, t!J, ti+ = Uz(& fk), d = u2@, bJ> 
ig = (au,jax)(o,tk), a:- = (au,/ax)(S,tk), i+ = 
(a~,bw(.5 tkh a: = (au,/ax)(a, a, S, = a, 0, = 
(ds/dt)(t,) and 

The integrals in (18) can be calculated analytically 
(see appendix for details). After some manipulation 
of (16) and (17) and using a matrix form, for every 
time step n, a system of equations must be solved : 

1 +‘)dt+@(& t,) (13) x;w 
where uj = K,/c, or tl, = 4 if uj represents 7; or C,, 
respectively; aj := au,jax,q= aqax, 

(14) 

and 

&(5, L) = 
s 

a w~(x, O)G(L x, t, 0) dx, $;(5, t,) = 0. 
II 

(15) 

Equation (13) is general and applies to the case where 
both XJ and Xf are moving. Applying (13) to the case 
in hand (i.e., Xi = 0, Xi = Xi = s(t) and X: = a) 
and taking 5 to >the boundaries of each domain Q, and 
assuming a step-wise variation of the variable u and 
its derivatives, and a linear propagation of the moving 
boundary s, = s,_] +u,(t,- tn_,), within each time 
step, the following system for the time step t, = 
t,_, +At is obtained : 

“7, 0 R;, 0 II” 
= 

0 “lu 0 I[ 1 ii;, ii” 
= M”, (19) 

where H;,, HI,, 8;, and ii”,, are matrices of 2 x 2 
elements, and M: is a vector of 4 elements (see 
appendix for details), u” = [t& z& <+ 41’ and 
0” = [go a:_ izj+ ii:]‘, where [ . .I’ denotes the 
matrix transpose. 

It can be seen that to solve the system (19), u, and 
s, must be known. Since the velocity and the position 
of the moving boundary are not known in advance, 
an iterative procedure is employed. Assuming a vel- 
ocity v,, hence a position s, = s,_, +v,(t,- tn-r), of 
the moving interface, using an extrapolation from the 
two previous time steps, the temperature field is solved 
from the following system : 

c “;T 0 R;, 01 

0 “);T 0 R”,, T” My 

u, u* 0 0 )[1[ 1 ,iX = M‘$ (20) 
1 0 0 K, K, 1 

where U, = [0 -11, Uz = 11 01, 6 = P Kl, 
K2 = [ - K2 01, and M; = [0 IunIT. The system (20) 
is obtained by writing (19) for T and incorporating 
the interface conditions (10) and (11). 

Similarly, the concentration field is obtained by 
solving the following system : 
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[H;,. 0 FIyc o 1 

0 H’;c 0 

V, Vz D, 1 
(21) 

where V, = [0 z.,], V> = [-u,, 01, D, = [0 -d,], 
D = [d2 01, F, = [0 s,], F1 = [-y? 0] and 
wc = [0 ‘I? -II,]“. It must be emphasized that the 
system (21) is written for the case where h, and h, are 
linear functions, given as h,(x) = y,x+q, and 
h,(x) = yzx+ f72. 

If the Stefan conditions (11) and (12) are re-written 
as : 

ds - - 
a=dt=cpr(T,~,T,+,K,,K,,1) 

= ~,(C.~~,C,+.C,-,~.~+,d,,dZ) (22) 

then, once the system (20) and (21) are solved, thus 
giving, as part of their solutions, the values of e:r, 
T+, T:-, T:‘+, cm and c+, which altogether with D, 
are used to calculate the velocity for the next iteration ; 
the velocity ~1: at the k-ith iteration is given by : 

u; =(l-o)c~~‘+o((p:)~~’ (23) 

where w is a relaxation factor (0 < o d 1) and 

(q:‘)” = cp,.(h,‘(T~~),h;‘(~+),~-,~+,d,,d,)~ 

(24) 

where II-’ refers to the inverse of h. The iterative 
process is stopped when : 

(25) 

where E is a small prescribed relative error. 
For the general case where h, and hz are any func- 

tions, the above procedure can be changed slightly 
where after the solution of (20), the concentrations left 
and right of the interface can be calculated separately 
from 

C’:- = h;‘(T:-) and C:+ = h,‘(T:+) (26) 

and the concentration field is obtained from 

H”. I( 0 8;(. 
= 

0 H;c 0 0 IF C” 1 8;,. c” 
[M’:]. (27) 

The rest of the procedure remains the same. It is worth 
mentioning that, for simplicity, the systems (20), (21) 
and (27) are left in their general form (i.e., not 
square) ; however, the systems become square when 
the known values (fixed and moving boundary con- 
ditions) are transferred to the right-hand side ; a stan- 
dard algorithm such as Gaussian elimination can then 
be used for their solutions. 

The extension of the present scheme to higher 
dimension is straightforward from the theoretical 
point of view. It consists of the implementation of two 

superposed moving boundary problems. For detailed 
numerical aspects of boundary element implemen- 
tation for moving boundary problems in higher 
dimension, see DeLima-Silva and Wrobel [19, 201. 
However, the evaluation of the convolution integral 
describing the time-history of the boundary solution 
become the dominant and a costly task from the cpu- 
time point of view, especially for large number of 
time steps. However, much progress has been made 
recently in this general topic of efficient computation 
in relation to the inherent time-history dependence in 
the integral representation of transient problems [21- 
251. For instance Demirel and Wang [21] divided the 
whole integral into near-history and far-history inte- 
grals, where the near-history is evaluated in the nor- 
mal procedure while the far-history one is computed 
using a truncation approximation. Davey and Hin- 
duja [22] approximate the integral from one time step 
to another, using some weights deduced from the 
known solution at the previous steps. Greengard and 
Strain [23] instead of using the free-space Green’s 
function, as a weighting function, they used a com- 
plimentary representation of the fundamental solu- 
tion obtained by Fourier series and the method of 
images. Davey and Bounds [24] used an approach 
whereby the fundamental solution at any time step is 
approximated by a linear combination of solutions 
evaluated at previous time steps. Zerroukat [25] elim- 
inates the time-history dependence, by replacing the 
time-history integral with a domain integral which is 
evaluated using radial basis functions approximation 
and the solution at the previous step. These general 
ideas, which can be the basis of a fast and efficient 
boundary element algorithm for transient problems, 
can be easily incorporated into the present scheme. 

4. RESULTS AND DISCUSSION 

In order to validate the scheme, let us consider the 
problem treated in [5], which is defined by (6)-(12) 
where 

/t,(c> = ‘r’,C+rI,, h*(C) = yzC+%, Q = cc 

pT=f’, =p;=p; = 1, f’y-=p; =,f;=fi =o 

FT = T,,, F; =O, F;=T,, F;=C,. (28) 

If the initial conditions are s(O) = 0, C,(x,O) = C, 
and T?(x, 0) = T,, the problem has the following ana- 
lytical solution : 

c, (% 4 = c,, 

T, (x, t) = To + (T,, - T,,) erf(x/2&)/ erf K I 

for 0 < x < s(t). 

C2 (x, t) = C, + (C,, - C,) erfc(x/2&)/ 

erfc(rca) 

Tz(x, t) = T, + (T,, - T,) erfc(x/2fi)/ 

erfc (KG) i 

for x > s(t) (29) 
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where s(t) = 21~~6 and cli = Ki/ci; erf(x) and 
erfc(x) = 1 -erf(x) are the error and its comp- 
lementary functio:ns, respectively. T,,, Cr,, C,, and K 
are four unknowns to be determined from the fol- 
lowing system : 

T,, = (A+ T&I (4 + T&WM$I WfhG4) 

(Cm - GY(C,, - w = +3 c&m 

Tcr = h CC,,) 

Tcr = b(G) (30) 

where the functions $, (i = 1,4) are given as : 

paltwN, i=l 

tis4 = 
‘Wl[~ZMJ~I/%)lr i = 2 

.JGzexp(z’) erf(z), i = 3’ (31) 

LJGzexp(z2) erfc(z), i = 4 

For simplicity, thl: material properties are considered 
as non-dimensional quantities. 

Problem 1 

d, = d2 = I, c, = 0.1, c2 = 0.5, K, = 1 

K2 = 1, To = 50, T, = 115, C, = 0.1 

y, = 20, y* = 40, 9, = ‘12 = 83. (32) 

Table 1 shows a comparison between the FDM, 
analytical and BEM solutions for Problem 1. 
Although the results of all the methods are in agree- 
ment, BEM certainly outperforms the FDM when it 
comes to accuracy per time-step length. For instance, 

Table 1 shows that the BEM gives a similar or more 
accurate solution with a time step 1000 times larger 
than that required by the FDM for similar accuracy. 

In order to see more details about the vicinity of 
the interface, Table 2 shows the temperature and con- 
centration distributions around the moving interface 
for Problem 1. Although, in principle the two regions 
across the interface could be any homogeneous states, 
they are assumed to be solid and liquid in order to 
give the results physical meaning and to show some 
drawbacks of the inability of handling the dis- 
continuity at the interface. It can be seen that the 
FDM smooths the transition across the interface, 
whereas the BEM preserves the sharp jump in the 
concentration. This is due to the inherent Dirac-delta 
like nature of the fundamental solution in BEM. As a 
consequence of the smoothing of that transition, the 
FDM gives rise to an artificial (i.e., numerical) mushy 
zone, a zone where the material is in an intermediate 
meta-stable state, which is neither totally solid nor 
totally liquid, but a combination of the two. This may 
confuse the scale of a real mushy-zone which may 
arise due to the physics of the problem, such as in 
Problem 2. However, in agreement with the analytical 
solution, the BEM does not show this behaviour 
because, unlike Problem 2, a physical mushy zone in 
this case should not arise. 

For a mushy zone to occur in the above problem, 
the following condition must be satisfied [26] : 

l = 2 [T,(s(O, 4 -h,(GMO, O)l < 0. (33) 

Since for the analytical solution, the quantity i in (33) 

Table 1. Temperature T(x, t) and concentration C(x, t) distributions at t = 0.4 for Problem 1 

Temperature 

FDM [S] BEM 
x A.r = 0.000025 Analytic At = 0.025 

BEM 
At = 0.01 

Concentration 

FDM [5] BEM 
AZ = 0.000025 Analytic At = 0.025 

BEM 
At = 0.01 

0.00 50.000 50.000 50.000 50.000 0.132 0.132 0.132 0.132 
0.05 53.10 53.136 53.131 53.137 0.132 0.132 0.132 0.132 
0.10 56.20 56.272 56.258 56.271 0.132 0.132 0.132 0.132 
0.15 59.30 59.405 59.381 59.401 0.132 0.132 0.132 0.132 
0.20 62.40 62.536 62.500 62.527 0.132 0.132 0.132 0.132 
0.25 65.50 65.663 65.613 65.649 0.132 0.132 0.132 0.132 
0.30 69.59 68.785 68.721 68.766 0.132 0.132 0.132 0.132 
0.35 71.69 71.901 71.824 71.877 0.132 0.132 0.132 0.132 
0.40 74.79 75.010 74.920 74.981 0.132 0.132 0.132 0.132 
0.45 77.89 78.111 78.010 78.079 0.132 0.132 0.132 0.132 
0.50 80.99 81.204 81.094 81.169 0.132 0.132 0.132 0.132 
0.55 84.08 84.287 84.170 84.251 0.132 0.132 0.132 0.132 
0.60 86.20 86.355 86.298 86.343 0.067 0.068 0.068 0.068 
0.65 87.35 87.614 87.544 87.596 0.069 0.070 0.070 0.070 
0.70 88.49 88.847 88.763 88.822 0.071 0.072 0.072 0.072 
0.75 89.61 90.054 89.954 90.022 0.073 0.074 0.074 0.074 
0.80 90.71 91.233 91.117 91.194 0.075 0.076 0.076 0.076 
0.85 91.78 92.382 92.251 92.338 0.077 0.078 0.078 0.078 
0.90 92.82 93.502 93.355 93.452 0.079 0.080 0.080 0.080 
0.95 93.83 94.590 94.429 94.535 0.081 0.082 0.082 0.082 
1.00 94.80 95.647 95.472 95.587 0.083 0.083 0.083 0.083 
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Table 2. Temperature 7(x, r) and concentration C(x, t) distributions around the interface at t = 0.4 for Problem I 

x T(x, t) C(& 0 State 

0.500 8 1.204 0.1320 Solid 
0.525 82.746 0.1320 Solid 
0.550 84.287 0.1320 Solid 
0.575 85.717 0.0667 Liquid 
0.600 86.355 0.0679 Liquid 
0.625 86.988 0.0690 Liquid 
0.650 87.614 0.0701 Liquid 
0.675 88.234 0.0712 Liquid 
0.700 88.847 0.0723 Liquid 

Analytic Finite difference [5] 

C(x 1) State 

80.99 0.132 Solid 
82.53 0.132 Solid 
84.08 0.132 Solid 
85.63 0.109 Mushy 
86.20 0.067 Liquid 
86.77 0.068 Liquid 
87.35 0.069 Liquid 
87.92 0.070 Liquid 
88.49 0.071 Liquid 

T(-x, 0 C(x, 0 State 

81.170 0.1318 Solid 
82.713 0.1319 Solid 
84.254 0.1320 Solid 
85.704 0.0662 Liquid 
86.342 0.0674 Liquid 
86.968 0.0686 Liquid 
87.591 0.0689 Liquid 
88.208 0.0709 Liquid 
88.816 0.0710 Liquid 

BEM 

Table 3. Temperature T(x, t) and concentration C(x, t) distributions at t = 0.8 with At = 0.01 for Problem 2 

x 

Concentration Temperature 

Analytic BEM Analytic BEM State 

0.55000 0.10200 0.10168 1.01722 1.01984 Solid 
0.55750 0.10200 0.10168 1.03023 1.03288 Solid 
0.56500 0.10200 0.10168 1.04319 1.04599 Solid 
0.57250 0.10200 0.10168 1.05613 1.05885 Solid 
0.58000 0.10200 0.10168 1.06903 1.07177 Solid 
0.58750 0.10200 0.10168 1.08189 1.08470 Solid 
0.59500 0.10200 0.10168 1.09472 1.09752 Solid 
0.60250 0.06089 0.05978 1.10629 1.10851 Mushy 
0.61000 0.07067 0.07015 1.11623 1.11855 Mushy 
0.61750 0.07800 0.07798 1.12614 1.12857 Mushy 
0.62500 0.0841 I 0.08377 1.13603 1.13858 Mushy 
0.63250 0.08778 0.088 11 1.14588 1.14851 Mushy 
0.64000 0.09144 0.09 130 1.15570 1.15844 Mushy 
0.64750 0.09389 0.09366 1.16550 1.16835 Mushy 
0.65500 0.095 I 1 0.09540 1.17526 1.17820 Mushy 
0.66250 0.09633 0.09666 1.18500 1.18805 Mushy 
0.67000 0.09756 0.09760 1.19470 1.19786 Liquid 
0.67750 0.09878 0.09827 1.20438 1.20761 Liquid 
0.68500 0.09878 0.09876 1.21402 1.21737 Liquid 
0.69250 0.09878 0.09912 1.22363 1.22706 Liquid 
0.70000 0.09878 0.09937 1.23321 1.23674 Liquid 

- 

is a constant divided by 4, the sign of < cannot 
change in time. However, one can obtain the same 
effect of (33) by taking d, relatively small. To this end, 
the following data are considered : 

Problem 2 

d, = c, = c2 = K, = K2 = 1 

d2 = 0.01, T, = 0, T, = 2.6, C, = 0.1 

y, = 1, yz = 2, yI, = ‘12 = 1. (34) 

Table 3 shows a comparison between the analytical 
and BEM solutions for Problem 2 where a physical 
mushy zone occurs [26]. In addition to the good agree- 
ment between the analytical and BEM solutions, 
Table 3 clearly shows a finite region which is neither 
completely liquid nor completely solid, and whose 
temperatures lies in between the two curves, solidus 
and liquidus, given by T = 1 + C and T = 1+2C, 

respectively. This situation occurs very often in binary 
and in general alloy phase change. Since in most 
materials the chemical diffusivity is generally much 
smaller than the thermal diffusivity, this mushy zone 
occurrence would be expected in most realistic prob- 
lems. 

5. CONCLUSIONS 

The numerical results show that the boundary 
element method is very suitable for this kind of prob- 
lems, especially when the interface presents a dis- 
continuity. When computations are to be performed 
for extended time, the use of large time steps is very 
desirable to reduce the computational cost. The results 
clearly show that, to obtain a certain accuracy, the 
time step in FDM ought to be many times smaller 
than that required for BEM for a similar accuracy. 
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The high accurate convolution time-integration of the 
BEM has been well established for boundary-value 
problems and it seems that the same conclusions can 
be extrapolated to moving boundary problems. This 
makes the BEM a more attractive alternative when 
the use of large time steps is required. 
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APPENDIX 

The integrals of the Green’s function and its derivative 
with respect to space when the field point x is stationary are 
given by : 

s ‘2 
uxt, x, t,, t) dt = --I 

‘I 2%J;; 
iexp(-a’)+&erf(a) L?i 11 =I 

where 

C-41) 

and 

s 

‘2 
$I<> x, t,, t) dt = v (erf(a*) -erf(a,)) (A2) 

‘I I 

where sign (x) = [xl/x and erf(x) is the error function. 
When the field point is moving with time, i.e. x = s(f); 

instead of (Al) and (A2), the following are used : 
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q*,*cS, s(t), t,, t) dt 
R’ = c( Y,(L Sri, tn, t?J -gz(.b,a. t,,, t,) 

2.u 2 
sz (a, s,. r,. t,,) -gz(a, a, L, L) 1 (‘48) 

= -$exp(-F)[erf(-~~)j~~. (A4) 

It is worth mentioning that expressions (Al)-(A4) are singu- 
M: = 

lar for r = It-xl = 0 and t, = t,. For these cases, the limit 
of the right-hand side of (Al)-(A4) are taken as the value of 
the integrals. The coefficients of matrices Hyu and n;,, and 
vector ME in (19) can be deduced from (16) and (17) as: where 

H;, = 
f-cc,h(o~o,L,t,,) 
-d(,h,(LO,t”,t,) 

~,h,(O,s,,t,,~,)-~*g,(O,s,,~,,,~,) 

~+a,h,(s,,s,,t,,t,)-u,g,(s,,s,,t,,t,) 1 

H;, = 
f-C(*hZ(S~,S,,t,,t,)+u~gz(s,,,s,,t”,t,) F -aZh2(a,s,,t,,t,,)+v,g2(a,s,,t,,t.) 

a&(&, a, t,, t.) 

f+a&(a, a, t,, 1,) 1 
R;,=Ci, -91(0, s,, t,, t,) 

-91 (L s,, r,> L) I 

(A5) 

I (A9) 


